
 1

A Model-Based Study of On-Board Data Processing
Architecture for Balloon-borne Aurora Observation

Chester Lim
Summer Space Grant 2010
Jet Propulsion Laboratory

Abstract— This paper discusses an application of ISAAC design methodology to a balloon-borne payload
electronic system for aurora observation. The methodology is composed of two phases, high level design and
low level implementation, the focus of this paper is on the high level design. This paper puts the system
architecture in the context of a balloon based application but it can be generalized to any airborne/space-borne
application. The system architecture includes a front-end detector, its corresponding data processing unit, and a
controller. VisualSim has been used to perform modeling and simulations to explore the entire design space,
finding optimal solutions that meet system requirements.

TABLE OF CONTENTS
1. INTRODUCTION.. 1
2. ISAAC DESIGN METHODOLOGY... 2
3. NOTATIONAL MISSION OVERVIEW .. 2
4. ASSUMPTIONS / PROBLEM FORMULATION... 4
5. VISUALSIM MODEL... 7
6. RESULTS .. 11
7. FUTURE WORK.. 15
ACKNOWLEDGEMENTS ... 16
REFERENCES ... 16

1. INTRODUCTION

The objective of the modeling methodology is to conduct trade space studies to evaluate the performance and
effectiveness of system architectures. A good model has characteristics of a high level block diagram with
functionality that incorporates low level requirements. The model discussed in this paper is for a ballooning
mission as described by [1]. There are three high level blocks in the model which includes the detector,
processing unit (Ebox), and a controller as shown in Figure 1. For this paper the instrument being modeled will
be one of JPL’s developed near infrared (NIR) cameras. The Ebox includes an FPGA-based data processing
platform (iBoard) developed by JPL and a storage element. Balloons from the National Scientific Ballooning
Facility (NSBF) have their own separate computing element that acts as the master controller thus is being
modeled as an external controller.

Figure 1: High Level System Design

This paper will go through the methodology of creating the model and some of the results that can be drawn
from it. The structure of the paper is as follows, Section 2 will discuss an innovative technology that the
ballooning mission incorporates which the model is a subset of; Section 3 will provide a background about one
such ballooning mission that uses the NIR camera to put things into context; Section 4 will formulate the

 2

problem, present assumptions and simplifications made by the model and discuss operational scenarios; Section
5 will give detail about the model; Section 6 will present results from the model and finally Section 7 will
discuss about future extensions.

2. ISAAC DESIGN METHODOLOGY
ISAAC (Instrument Shared Artifact for Computing) is a JPL three year research and development task. Its main
purpose is to provide designers a work flow that takes the users’ high-level block diagrams and implement them
into hardware. ISAAC technology targets a variety of instruments including radar, radiometer, and imager. It
hopes to cut design time and cost by introducing a reusable FPGA data platform that has prebuilt cores which
the designer can use.

Figure 2: ISAAC concept diagram

Figure 2 shows the concept flow starting from the top flowing to the bottom. To begin, the user will use iTool
which is an integrated tool-chain that will aid in taking high-level designs to be implemented in hardware.
iBench contains a suite of historical data streams from a variety of instruments. Data streams may be used
through a common test bench architecture that tests and validates the ISAAC platform. iCore contains a set of
standard IP cores which the designer may select from. The designer does not need to spend time developing
these cores since it’s been provided. iPackage provides a front end interface to the user which allows for
instrument control and computing solution. iBus handles all the data flowing to and from ISAAC’s FPGA
platform to iPackage. iBus creates a standard protocol for the various instrument data transmissions. Finally,
iBoard is the FPGA platform that features a high-performance Virtex 5 FPGA.

The ISAAC methodology is composed of two phases, high level modeling and simulation and low level
implementation. This paper will focus on the high level models and simulations, exploring possible design
spaces to determine optimal solutions for the system design.

3. NOTATIONAL MISSION OVERVIEW
Auroral observations are limited to places near the magnetic poles. In addition, it is desirable to be in a place
that is not near any locations that may disrupt observations; this limits the locations to Antarctica. The NSBF
restricts the window of opportunity of a balloon observation in Antarctica from December 1st to completion of
the mission by February 1st. Based on the MAXIS balloon mission in 2000, the mission is expected to have a 15
day flight duration cruising at 35-50 km above ground.

 3

Figure 3: Balloon Flight Path [2]

The red squiggly line in Figure 3 shows the flight path taken by MAXIS in 2000 over Antarctica [6]. The red dot
in the middle of the figure represents the geographical pole and the red dot in the lower right quadrant represents
the magnetic pole. The red oval around the magnetic pole represents the auroral ring and the black circles are
points at which the balloon is able to do observations as represented by the white circles. The balloon is
expected to continuously change orientation while on its flight path. As a result, the cameras may possibly
observe dayside aurora, night side aurora, aurora at lower or higher than the auroral ring.

The gondola on balloons provided by NSBF has separate control unit and power supply. The payload will reside
in the Standard Instrumentation Package (SIP) which has been provided by the balloon. In the SIP, the payload
will be able to communicate with the rest of the gondola. Because the processor unit and power supply from the
gondola is being isolated from the SIP, the payload will need to supply them.

Figure 4: Top level diagram

Figure 4 shows the top level diagram of the system. The mission payload will reside in the science portion of the
gondola. The science payload includes the NIR camera, the FPGA based reconfigureable on-board data
processing platform iBoard, and stroage. Its mission is to capture data on daytime aurora so the scientists can
analyse the results. The model will need to simulate the capturing of data by the NIR camera, processing and
storaging functionality of the Ebox, and downlinking from the gondola.

Payload/SIP

NIR

Battery

Ebox

iBoard

Storage

Gondola

Controller

Telecommunications

 4

4. ASSUMPTIONS / PROBLEM FORMULATION
4.1 Assumptions

The preliminary model presented in this paper assumes and simplifies the following:
1. A single NIR camera is used to capture data and left on for the whole duration of the mission.
2. One frame is captured per second
3. Image size is 625 KB
4. 6 hours of the mission is simulated
5. Aurora data fall into one of three categories

o Not visible – frames with no aurora activity, Threshold = 1
o Barely visible – frames with very faint aurora, Threshold = 2
o Highly visible – frames with very obvious aurora, Threshold = 3

6. Aurora data categories are generated uniformly
7. BitMicro’s E-Disk Altima Ultra320 SCSI Flash SSD specifications were used for the storage device
8. Batteries are not rechargeable
9. Data reduction is set to threshold detector, no data compression (raw images are stored)
10. Payload receives information about downlinking opportunities from the balloon’s gondola

o LOS <1% of the time, has data rate of 1 Mbps
o TDRSS available 24/7, has data rate of 92 Kbps

11. Downlinking is always done when available
12. Data are downlinking in a FIFO basis
13. Ebox only handles processing of data and storage
14. Balloon gondola will send messages to the Ebox requesting data to be downlinked.
15. Model is only concerned with the payload side

As a reference, this model will use one camera that will continuously record data at one frame per second. The
image size and downlink rates were provided by [2]. A threshold detector for aurora observations has been
developed and shown to work; the model will use this method as a baseline algorithm (refer to [7] for details
about method). A single simulated second maps to a single second in real time. There are 1296000 seconds in
15 days thus 1296000 frames are produced. This amount of frames is too large for the simulator to handle so 6
simulated hours or 21600 frames will be used (6 simulated hours is near the maximum data points the simulator
can process).

4.2 Operational Scenario

Three major design spaces are being considered in this paper; they are storage capacity, power, and downlink.
These three design spaces produce a large amount of operational scenarios. We will only consider a subset of
these scenarios and consider all else a hybrid of them. The operational scenarios are as follows:

1. Store all data on-board during the entire mission without downlink it
2. All data are downlinked real time;
3. Data are process and stored first and only real-time data needs to be downlinked real time

The first scenario is the extreme case where all the data will be stored on board. The second scenario is the
opposite end of extremity where all the data is being downlinked. The third scenario is a hybrid of the first two
and involves both storing and downlinking data in parallel; this will produce redundant data. The reasoning for
considering these extreme cases is to gather information about them and know that any other scenarios will
perform better than these.

 5

The model will simulate the three operational scenario mentioned above based on the assumptions and
simplifications mentioned earlier. The current model simulates the three scenarios and gets estimates on the
storage capacity requirements as well as power usage.

4.3 Problem Formulation

The system consists of three blocks, instrument, Ebox, and external controller. The problem is how the system
architecture should be designed such that all requirements will be satisfied. This section will describe three
problems. Problem 1 describes a data reduction and compression architecture, Problem 2 describes the issues
with power and operational states, and Problem 3 describes the issue with downlinking and the required storage
capacity.

4.3.1 Data Reduction / Compression

The system consists of three blocks, instrument, Ebox, and external controller. The problem is how the system
architecture should be designed such that all requirements will be satisfied. The first step in this approach is to
determine the method of data processing. Before discussing this issue, let’s define the difference between data
reduction and data compression.

1. Data Reduction is the removal of information that is not recoverable.
2. Data Compression compacts the data into a smaller volume and is recoverable to some extent (there are

compression algorithms that are lossy in which case, some bits are thrown away).

To put things into context with the aurora observation mission, video captured by the NIR camera does not
always contain auroral activities. These “non-interesting” frames consume storage space and possibly
processing power. In addition, the mission captures data on the order of terabytes (TB) which exceeds the
maximum capacity of single storage devices.

Figure 5 shows a possible data flow from processing raw data to a more manageable size. The first exploration
that needs to be done is deciding whether to perform data reduction or data compression first. The order in this
case matters because in the case where data reduction is performed first, fewer images will be compressed thus
perhaps less processing time. However it may be the opposite case where perhaps compression should be
performed first because the data reduction algorithm works better with fewer bits.

In addition to deciding whether data reduction or data compression should be done first, choosing the data
reduction algorithm and data compression standard is also critical. There are several data reduction algorithm
that may be considered like a threshold detector that throws away images that do not pass the threshold or an
algorithm that learns the patterns an aurora and captures only those images. For data compression, there are
quite a number of standards to choose from which needs to be determined.

Figure 5: Data Flow

 6

4.3.2 Power and Operational States

Another problem to consider will be power management and operational modes. Different operational modes
will draw different amounts of power. Choosing when to turn things on or off and what each operational mode
will do is important.

Table 1: Power States

Figure 6: Power State Flow Diagram

Table 1 shows all the possible power states the payload can go through during the mission. The possible states
are: Initialization, Calibration, Standby, Active, and Safe. Figure 6 shows a pictorial representation of the flow
of states. The initialization state is called upon during the first few minutes of the mission. It wakes up the
iBoard and storage device (Ebox) to perform engineering telemetry. In the initialization state, the sub-state,
calibration is invoked which turn on the cameras to configure them properly. After initialization, the system
will go into standby state in which both the cameras and Ebox are put into standby and is ready to capture data.
The active state is the primary state of the system. In this state, the cameras and Ebox are capturing, processing
and storing data. In the active state, the system has the option to go back into the standby state to conserve
power. At any point after the initialization state, the system may determine that power levels are not enough to
sustain operability and will go into the safe state. In the safe state, the payload is turned off, when power reach
operational levels, the power states will reset and will be placed back into the initialization state.

4.3.3 Downlink and Storage

There are two choices of downlinking data for this mission. The line of sight (LOS) is the fastest but is only
available for less than 1% of mission duration. The Tracking and Data Relay Satellite (TDRSS) is very slow but

 7

is always available. If the system does incorporate downlinking, when and how should it downlink?
Downlinking will alleviate some of the load from the storage device but is not a significant amount compared to
data volume captured. This model will focus on determining if downlinking will have an effect on the on-board
storage device and determine the capacity needed.

5. VISUALSIM MODEL
VisualSim is a commercial modeling tool used to evaluate a system design [5]. The user is capable of designing
complex systems and performing analysis and validation based on the concept specification. Its goal is to reduce
the time in developing systems and aids the system engineer to extract low level implementation requirements
from high level system architecture. This is done by using VisualSim’s hierarchy block that enables specifying
low level requirement without losing the big picture. VisualSim is the modeling tool that this project uses.

The approach for designing these models derive from the first two phases of the ISAAC methodology. Phase
one starts with Figure 4. It shows the top level design that we would like to implement. Based on the
assumptions and operational scenarios stated earlier, we can implement the design using VisualSim.

5.1 Top Level Balloon-based Model

Figure 7: High Level Diagram

Figure 7 shows the VisualSim implementation of the top level system in Figure 4. The system can be broken
down into two separate entities, the payload and gondola. Commands from the gondola are issued to the Ebox
giving it information on when it is safe to turn on or off and requests data for downlinking when it becomes
available. The Ebox will manage the payload’s power and operational states and decides when to downlink.
Components that make up the payload are the NIR camera, iBoard, storage device and the battery. The balloon
gondola is assumed to have telecommunication equipment used for downlinking and a command and data
handling (CDH) unit.

The payload’s top level block diagram can be seen in the blue box. Data is generated by the NIR camera and
processed in iBoard, the FPGA based data processing platform. From iBoard, data is sent to storage (SSD) or to
the balloon’s gondola for downlinking. The power generation and distribution (PGD) block holds the battery

 8

and monitors the usage.

The gondola consists of the downlinking unit and CDH. The downlinking unit detects when and which type of
downlink is available and for how long. It is also responsible for receiving uplinked data and transmitting
downlinked data. The CDH receives telemetry from its telecommunication unit and passes it on to the payload.
It also notifies the payload when downlinking is available and if there were any uplinked messages.
Since simulating 15 days with one second resolution (1296000 points for one camera) is too much to handle
with VisualSim, the total time spans 6 simulated hours (21600 points). The three mission scenarios are captured
by toggling the parameters Storage_available, realtime_downlink, LOS_available, TDRSS_available,
LOS_mintime, and LOS_maxtime. Table 2 lists these parameters and provides a description of how it is being
used.

Table 2: Operational Scenario Description

Storage Available
Real-time
Downlink

LOS Available TDRSS Available Description

FALSE FALSE X X Does nothing

FALSE TRUE FALSE FALSE Does nothing
FALSE TRUE FALSE TRUE All data are real-time downlinked via. TDRSS
FALSE TRUE TRUE FALSE All data are real-time downlinked via. LOS

FALSE TRUE TRUE TRUE
All data are downlinked real-time with both
TDRSS & LOS downlink, but not at the same
time

TRUE FALSE FALSE FALSE Data is stored

TRUE FALSE FALSE TRUE
All data are stored first then downlinked via.
TDRSS

TRUE FALSE TRUE FALSE
All data are stored first then downlinked via.
LOS

TRUE FALSE TRUE TRUE
All data are stored first then downlinked via.
TDRSS & LOS but not at the same time

TRUE TRUE FALSE FALSE All data are stored

TRUE TRUE FALSE TRUE
Data are stored and downlinked via TDRSS in
parallel

TRUE TRUE TRUE FALSE
Data are stored and downlinked via LOS in
parallel

TRUE TRUE TRUE TRUE
Data are stored and downlinked via TDRSS &
LOS, but not at the same time, in parallel

For notational purposes in the results section, the settings in blue will be Configuration 1, red will be
Configuration 2, green will be Configuration 3, purple will be Configuration 4 and peach will be configuration
5. The configurations with both Storage_available and realtime_downlink set to true is not displayed in the
results section because it yields the same results as Configuration 1 and 2 (buffer_size) and Configuration 3
(storage_size). The rest of the unassigned configurations have not been implemented into this preliminary
system design.

5.2 Low Level System Models

 9

Figure 8: a) NIR camera b) iBoard c) SSD d) PGD

Figure 8 shows the low level detail implementation of the payload. Figure 8a shows the internal blocks of the
NIR camera, 7b shows the internal block of iBoard, 7c shows the internal block of the storage and 7d shows the
intern block for PGD. Figure 8 reside inside of VisualSim’s hierarchy model denoted by the green blocks with
an arrow and an ‘H’ as shown in Figure 7. This is a nice feature of VisualSim because the high level block
diagram can be kept while still having functionality in the lower levels.

5.2.1 NIR Camera

Figure 8a consists of a traffic generator (yellow), a mapper (blue), and a processing block (red). Together it
simulates the NIR camera. Data is being produced by the traffic generator every second based on the assumption
that the camera takes images once every second. The traffic generator generates data in a data structure format
which contains information such as time and ID. The following is an example of the contents of the data
structure that VisualSim creates.

DISPLAY AT TIME ------ 54.34882608700 sec ------
{BLOCK = "Aurora_Gen",
DELTA = 0.0,
DS_NAME = "<path>.Aurora_DS",
ID = 1,
INDEX = 0,
TIME = 1.0E-10,
Type = 2}

 The data structure was extended to include information on the type of image. Data flows through the mapper
which is needed for simulations purposes. It allows different hierarchical blocks to run simultaneously instead of
sequentially i.e. parallel processing. Mappers do not have any delay thus the data comes right out to the

a) b)

c) d)

 10

processing block. Here, the data is classified into one of three categories: not, barely, and highly visible. The
processing block generates these three categories uniformly; this assumption was made to simplify the problem.
It assigns ‘not visible’ to 1, ‘barely visible’ to 2, and ‘highly visible’ to 3 in Type of the data structure.
Parameters of this hierarchical block are image_size and FPS. image_size is set to the provided information of
625 KB and FPS (frames per second) is set by assumption.

5.2.2 iBoard

Figure 8b models the iBoard FPGA based data processing platform. It consists of a mapper (blue), several
processing blocks (red), and a CustomC block (light blue). After the data is categorized into one of the three
types of frames, it is sent to the iBoard for processing. Once again, data first flows through the mapper which
allows the data to be processed simultaneously as the camera block is producing data. Immediately after, the
data is parsed into three points of interest, TIME, ID, and Type. TIME provides information on when the data
generated and ID is the data’s unique number. Type describes which category the data falls under (not visible,
barely visible, or highly visible). For simplicity, the processing algorithm is a threshold detector. The three key
information are passed along with the threshold value to the CustomC block. Inside the CustomC block is a C
program that compares the threshold value to the Type. If the Type is larger than or equal to the threshold value,
then the data is passed otherwise the data is thrown away. Data coming out of the CustomC block flows through
the last processing block which determines where to route the data. The possible options are to route directly to
storage only, balloon gondola only, or both storage and gondola. Parameters in this hierarchy block consist of
Threshold and Processing_delay. The Threshold value is a number between 1 and 3 which represents the three
different types of images. Processing_delay is a parameter that describes how long in seconds the processor
takes to perform an algorithm.

5.2.3 Storage

Figure 8c shows the model for the storage device. It is assumed that the mission will be using a solid state
device (SSD).This hierarchical block contains several mappers (blue), processing blocks (red), and a Smart
Resource Block (blue with queuing diagram). Data from the iBoard goes through the mapper then through a
memory usage counter that increment each time when data passes through. The data is then sent to the Smart
Resource Block where it is being stored. The Smart Resource Block is configured as a very large FIFO (first-in,
first-out) queue. Most of the time, the data will sit idle in this block, when iBoard determines it wants to
downlink data, iBoard will send a message through ‘pop’ which takes the oldest data and sends it to the
gondola. When that happens, the memory usage counter is decremented. The parameters in this block are
access_time and storage_size. The time it takes to read and write data is characterized by the access_time
parameter while the storage size is characterized by storage_size. The storage_size is a function of image_size
because it is useful to know the amount of frames that can be stored.

5.2.4 Power Manager

Finally Figure 8d shows the model for the PGD unit. This unit consists of only the Power Manager (red). The
Power Manager has a table of all the mappers being used and their power usage. Whenever a mapper is called
on, the Power Manager will do a table look up for its corresponding power usage and adjust the current power
level respectively. This mission assumes that the batteries cannot be recharged thus the Power Manager will
only be decrementing. The parameters of this block are cam_active, cam_standby, iBoard_active,
iBoard_standby, ssd_write, ssd_read, and ssd_standby. There parameters are inputted into the Power Manger’s
table.

 11

Figure 9: a) Downlink unit b) CDH unit

Similar to Figure 8, Figure 9 are hierarchy blocks that reside in Figure 7 under the balloon’s gondola. Figure 9a
shows the downlinking unit and Figure 9b shows the CDH unit. Both of these units are part of the gondola and
modeled as an external controller to the payload.

5.2.5 Downlink Unit

Figure 9a shows the model for the balloon’s gondola downlink unit. It consists of single event generator (white),
processing blocks (red) and delay (gray). A flag is generated at a random time by the single event generator
however for simplicity, both the single event generator will generate a flag at the start of the simulation. This
flag will represent the telecommunications detecting available downlink. The flag goes through the processing
blocks which calculates the duration of the downlink and passes that information to the CDH unit. When iBoard
decides to downlink, data will be pulled from the storage and passed to this module for downlinking. The
parameters of this block are LOS_delay, LOS_rate, TDRSS_delay, and TDRSS_rate. LOS_rate is a given
parameter and LOS_delay is calculated using LOS_rate. Similarly TDRSS_rate is given and TDRSS_delay is
calculated using TDRSS_rate. These parameters model the time it takes to downlink a single frame.

5.2.6 CDH Unit

The CDH unit on the gondola is the main processing unit. It is responsible for keeping the balloon alive and
functional. CDH will provide information about the balloon’s location, power status, and downlink
availabilities. The model assumes that the payload has no control over CDH. This model consists of several
processing blocks (red) and a Smart Resource Block (blue with queuing diagram). A flag from the downlink
unit will be sent to CDH notifying that a downlink option is available. CDH will relay this message to iBoard
and waits for iBoard’s decision. If downlink is taken, CDH will pull data from the storage and puts it into the
Smart Resource Block buffer. Based on which high level parameters are toggled, the CDH block will determine
which downlink will be used and routes the paths accordingly. CDH determines how much data can be
downlinked by using the information generated by the downlink unit. It applies flow control and buffers as
much data that can be transmitted in the window of opportunity. The only parameter in this model is the
buffer_size which is a function of image_size to determine how many frames are being sent.

6. RESULTS
The current model explores the storage size usage for each of the three scenarios. These results are for simulated
6 hour mission time during active state. The reason for this is because 6 simulated hours is how much the
simulator can process. In addition, the active state shown in Figure 6 is the state which the system will be in
most of the time so the simulator will model a typical operation. Both downlinks are available from the start of

a) b)

 12

the simulation and are always taken. The image size is taken to be 625KB and a frame is captured every
simulated second. The purpose of this experiment is to determine the required storage size under the
configurations shown on Table 2 and with varying threshold.

In the first case where only downlink is available, the payload storage size is ‘X’ because it does not matter what
the size is. The buffer size on the gondola is given by the number of frames rejected plus one multiplied with the
image size. These numbers are determined by setting buffer_size to equal image_size and viewing the number of
rejected data. The number of rejected data will tell us how many frames need to be stored plus one. The same
technique was used in determining the storage size. In the cases where Storage_available is true and
realtime_downlink is false, buffer_size is set to image_size because the downlinked data are requested one at a
time and so the gondola requires a buffer size of at least one frame. In cases where both Storage_available and
realtime_downlink is true, the storage_size and buffer_size are exactly the same as when one is true and the
other is false. This is because when realtime_downlink is true, data flows in parallel to both the storage and
CDH and the payload storage and gondola’s buffer are independent.

Table 3: Threshold = 1

Storage Available
Real-time
Downlink

LOS Available TDRSS Available Description

FALSE TRUE FALSE TRUE All data are real-time downlinked via. TDRSS

Storage Size Buffer Size

X 390

Storage Available
Real-time
Downlink

LOS Available TDRSS Available Description

FALSE TRUE TRUE FALSE All data are real-time downlinked via. LOS

Storage Size Buffer Size

X 2880

Storage Available
Real-time
Downlink

LOS Available TDRSS Available Description

TRUE FALSE FALSE FALSE All data are stored

Storage Size Buffer Size

21599 625 KB

Storage Available
Real-time
Downlink

LOS Available TDRSS Available Description

TRUE FALSE FALSE TRUE All data are stored first then downlinked via. TDRSS

Storage Size Buffer Size

21202 625 KB

Storage Available
Real-time
Downlink

LOS Available TDRSS Available Description

TRUE FALSE TRUE FALSE All data are stored first then downlinked via. LOS

Storage Size Buffer Size

17999 625 KB

Table 3 shows the case where none of the frames were rejected thus will be considered the baseline. Based on
the first two results, we can see that LOS downlink will transfer more data than TDRSS. We can also conclude
that if downlinking data in real-time were chosen, we would need a buffer size of at least 1.8 GB per 6 hours.
The latter three results are when data is stored first and waits to be downlinked. In the worst case where no
downlink is available, the storage size required to hold all the data is 13.5 GB per 6 hours. The best case among
the latter three configurations is when data is being stored and LOS downlink is being used. This configuration
requires a storage capacity of ~11.4 GB per 6 hours which means LOS downlink offloaded 2 GB of data per 6
hours.

 13

Table 4: Threshold = 2

Storage Available Real-time Downlink LOS Available TDRSS Available AVG # of Rejected SD

FALSE TRUE FALSE TRUE

 Storage Size X

 Buffer Size 385.5 0.55

Storage Available Real-time Downlink LOS Available TDRSS Available

FALSE TRUE TRUE FALSE

 Storage Size X

 Buffer Size 2512.6 9.69

Storage Available Real-time Downlink LOS Available TDRSS Available

TRUE FALSE FALSE FALSE

 Storage Size 14449.5 62.12

 Buffer Size 1

Storage Available Real-time Downlink LOS Available TDRSS Available

TRUE FALSE FALSE TRUE

 Storage Size 13922 70.29

 Buffer Size 1

Storage Available Real-time Downlink LOS Available TDRSS Available

TRUE FALSE TRUE FALSE

 Storage Size 10786.5 75.15

 Buffer Size 1

Table 4 is the case where frames with no event are not stored. Each configuration was ran seven times and
averaged; the standard deviation was also calculated. Similar to Table 3, when downlinking real-time data, LOS
can downlink more data but requires a larger buffer size. Comparing this configuration with Table 3’s, the
buffer size is ~1.6 GB per 6 hours which is ~0.2 GB less. In terms of storage, the worst case requires ~9 GB per
6 hours, ~4 GB per 6 hours less than in Table 3. The best case where LOS downlink is being used to offload
storage requires a storage capacity of ~6.7 GB per 6 hours, nearly half the capacity required in Table 3.

Table 5: Threshold = 3

Storage Available Real-time Downlink LOS Available TDRSS Available AVG # of Rejected SD

FALSE TRUE FALSE TRUE

 Storage Size X

 Buffer Size 374.71 .76

Storage Available Real-time Downlink LOS Available TDRSS Available

FALSE TRUE TRUE FALSE

 Storage Size X

 Buffer Size 1499 7.07

Storage Available Real-time Downlink LOS Available TDRSS Available

TRUE FALSE FALSE FALSE

 Storage Size 7189.29 101.82

 Buffer Size 1

Storage Available Real-time Downlink LOS Available TDRSS Available

TRUE FALSE FALSE TRUE

 Storage Size 6786 29.72

 Buffer Size 1

 14

Storage Available Real-time Downlink LOS Available TDRSS Available

TRUE FALSE TRUE FALSE

 Storage Size 4074.57 47.44

 Buffer Size 1

Table 5 is the case where frames with highly visible aurora are stored and the rest are rejected. Similar to Table
4, each configuration was tested seven times and averaged with standard deviation calculated. When
downlinking real-time data, LOS transferred the most, requiring ~0.9 GB per 6 hours of buffer capacity. This
was approximately half the capacity required in Table 3. The worst case for storage required ~4.5 GB per 6
hours, approximate 1/3 of Table 3. The best case for storage requires ~2.5 GB per 6 hours which is
approximately 1/4 of Table 3.

Table 6: Storage and Buffer Size Summary

Storage Available Real-time Downlink LOS Available TDRSS Available Description – Configuration 1

FALSE TRUE FALSE TRUE All data are real-time downlinked via. TDRSS

Image Type Storage Size (KB) Buffer Size (KB)

1 0 243750

2 0 241607.1429

3 0 234821.4286

Storage Available Real-time Downlink LOS Available TDRSS Available Description – Configuration 2

FALSE TRUE TRUE FALSE All data are real-time downlinked via. LOS

Image Type Storage Size (KB) Buffer Size (KB)

1 0 1800000

2 0 1572678.571

3 0 937500

Storage Available Real-time Downlink LOS Available TDRSS Available Description – Configuration 3

TRUE FALSE FALSE FALSE All data are stored

Image Type Storage Size (KB) Buffer Size (KB)

1 13499375 625

2 9022321.429 625

3 4493928.571 625

Storage Available Real-time Downlink LOS Available TDRSS Available Description – Configuration 4

TRUE FALSE FALSE TRUE All data are stored first then downlinked via. TDRSS

Image Type Storage Size (KB) Buffer Size (KB)

1 13251250 625

2 8738125 625

3 4241875 625

Storage Available Real-time Downlink LOS Available TDRSS Available Description – Configuration 5

TRUE FALSE TRUE FALSE All data are stored first then downlinked via. LOS

Image Type Storage Size (KB) Buffer Size (KB)

1 11250000 625

2 6750803.571 625

3 2547232.143 625

 15

Figure 10: Graph comparing threshold for a) Configuration 1 b) Configuration 2 c) Configuration 3 d) Configuration 4 e)
Configuration 5

Table 6 compares the results with respect to each configuration. In Table 3, the two worst case scenarios
Configurations 1 and 2 (strictly downlinking) and Configuration 3 (strictly storing), the required storage size
was ~13.5 GB and buffer size was ~1.8 GB. Looking at Configurations 4 and 5 in Table 3 (data is stored first
then downlinked), we see that there was a slight improvement in storage capacity but as the threshold becomes
higher, the improvement increases. Keeping in mind that this is for 6 hours, a 15 day mission will require ~810
GB of storage capacity and ~108 GB of downlink buffer. To make matters worse, this model only has one
camera; the mission will require four cameras with larger frame size. We can see based on the results that
downlinking data in real-time will require a relatively large buffer while downlinking from the storage unit can
offload some of the storage requirements in the Ebox.

These results implement the threshold detector data reduction architecture with no compression. Seeing that the
data is not being reduced sufficiently, Problem 1 will need to be investigated further. The assumption for made
for the camera was to let it be continuously on. Modifying Problem 2 such that cameras can be turned off and on
during the operational state may reduce some of the data volume. Finally Tables 3 through 6 directly relate to
Problem 3. From these tables we were able to see the effects of downlinking and get a better understanding what
the storage requirements are.

7. FUTURE WORK
This paper has explored the first part of the ISAAC methodology of high level design simulation. Through
modeling and simulations, we can conclude that downlinking data from the storage device may prove useful in
reducing the storage capacity required. Downlinking real-time data however does not improve the storage
capacity and will require a large buffer size. After determining the final system design the next step is to
continue with ISAAC methodology. The high level designs will be mapped into the low level FPGA
implementation.

a) b)

c) d)

e)

 16

ACKNOWLEDGEMENTS
This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, and was
sponsored by the Hawaii Space Grant Consortium and the National Aeronautics and Space Administration.

REFERENCES
[1] Zhou, X. Y, D. Lummerzheim, G. R Gladstone, S. D. Gunapala, S. B. Bandara, J. Trhne, L. Herrell (2008),

Magnetospheric application of high-altitude long-duration balloon technology: Daylight auroral
observations, Adv. Space Res., 42, 1676-1682

[2] Zhou, X. Y, D. Lummerzheim, G. R Gladstone, S. D. Gunapala (2007), Feasibility of observing dayside
aurora using NIR camera onboard high-altitude balloons, Geophys. Res. Lett, 34, L03105,
doi:10.1029/2006GL028611

[3] Gorham, P et al., “Antarctic Impulsive Transient Antenna: A Long Duration Balloon High Energy Neutrino

Observatory,” University of Hawaii at Manoa., Honolulu, HI, 2003

[4] He, Y et al., “ISAAC: Highly-Reusable, Highly-Capable, Integrated Instrument Control-and-Computing

Platform,” Jet Propulsion Laboratory., Pasadena, CA, 2008

[5] VisualSim. Mirabilis Design [Online]. Available at http://www.mirabilisdesign.com.

[6] MeV Auroral X-ray Imaging and Spectroscopy 1999/2000 Long Duration Balloon Flight Around the South
Pole. University of Washington., Seattle, WA, 2000

[7] Lim C., Detecting Daytime Aurora Using Digital Image Processing, Class Project Report, Oct. 2009.

